So, following the motion of a control volume, the mass is conserved, and the fractional change in density is equal and opposite to the fractional change in volume.

We can rewrite the volume term: $$ \frac{1}{\delta V} \frac{D \delta V}{Dt} = \frac{1}{\delta x \delta y \delta z} \frac{D}{Dt} (\delta x \delta y \delta z) = \frac{1}{\delta x} \frac{D \delta x}{Dt} + \frac{1}{\delta y} \frac{D \delta y}{Dt} + \frac{1}{\delta z} \frac{D \delta z}{Dt} $$ What does $\frac{D \delta x}{Dt}$ represent? Consider the $u$ velocity at the left ($u1$) and the right ($u2$) of our control volume:
